"Opportunities for the Dynamical Investigation of Primary Processes in Radiation- Physics, Chemistry, and Biology"

Proposed Experiments:

Fs X-Ray-Pump / Visible-Probe

Fs X-Ray-Pump / X-Ray-Probe

What is the structure and dynamics of the conduction band?

BACKGROUND

IONIZING RADIATION IN WATER AND AQUEOUS SOLUTIONS PRODUCES IN ~ 700 FS:

- Hydrated electrons
- Hydroxy radicals OH
- H₂
- H₃O+

THESE SPECIES, ESPECIALLY THE OH RADICALS, DAMAGE DNA AND OTHER BIOMOLECULES LEADING TO THE MEDICAL CONSEQUENCES ON IONIZING RADIATION:

- 1. RADIATION TREATMENT
- 2. RADIATION INDUCED MUTATIONS

X-ray Absorption Water

Initial absorption event is followed by cascade of many e/hole pairs (< 20)

A. Nilsson (SSRL)

THE ENERGY DEPOSITED BY THE IONIZING RADIATION INVOLVES MULTIPLE-CASCADE PROCESSES IN THE FIRST 100-200 FS THAT HAVE NEVER BEEN TIME RESOLVED, INCLUDING:

Conduction band population, depopluation and relaxation

Secondary electron generation

Excited State Dynamics

Solvated Electron Trapping and relaxation

Background - Structure and Spectroscopy

Structure of the ground state

Absorption spectrum

Nanometers

Spatial Extent and Reactivity Conduction Band Electrons in Water

Dong Hee Son, Tak Kee, and Paul Barbara

Department of Chemistry and Biochemistry

The University of Texas

- Hydrated electron is a simple and fundamental species in solution phase chemistry
- Excited States of the Hydrated Electron offer insight on the nature of conduction band like states in liquids
- Highly Relevant to Radiation Chemistry and Physics (including Ultrafast X-ray Experiments)

Hydrated electron

- Structure
- Chemistry
- Relaxation Dynamics

of the excited states

Background - Structure and Spectroscopy

Multi-Photoionization/Probe

 H_2O

Multi-Photoionization/Pump/Probe

Structure (Size) of the Hydrated Electron

СВ ? р

Theoretical	Experimental
N/A	✓ This study
<r>_{pl} ≈ 2 <r>_s</r></r>	✓ This study
<r>_s = 2.7 Å</r>	3 Å

Measurement of the Spatial Extent of p, CB Electron

Photo-induced suppression of geminate recombination

$$H_2O$$

$$\downarrow MPI (400 nm)$$
 $H_2O^+ + e^-$

$$\downarrow H_3O^+, OH + e^ e^ Geminate$$
recombination
$$\downarrow H_2O, H, OH^-$$

Photo-suppression of Geminate Recombination (GR)

Ionization pulse: 400 nm (or 266 nm)

Suppression pulse: 800 nm

Probe pulse: 650 nm

 Geminate recombination kinetics is strongly suppressed due to excitation of the hydrated electron by the suppression pulse at 800 nm

1-photon vs. 2-photon Route to Conduction Band

Suppression Pulse Energy vs. % Suppression of GR

At low suppression pulse energy;
Bleach is *linear*,
Suppression is *quadratic* to the pulse energy at 800 nm

Suppression correlates with two photon process - only CB electron is responsible for suppression

Comparison of 1-photon and 2-photon CB State

- Excited states reached by excitation with weak 400 nm and strong 800 nm exhibits identical electronic relaxation dynamics
- Both states are identical CB state

Modeling of the Photo-suppression of GR

Estimate a migration length and calculate $e^{-}(r,t)$ at $t=t_{c+}$ at a given λ_c energy

Migration length

CB > 30 Å

p < 3 Å

Compare with data

Calculate $e^{-}(r,t)$, S(t) for $t > t_{c+}$

Scavenging Reaction of the Hydrated Electron

Hydrated electron is a strong reducing agent

Photo-induced Scavenging of the Hydrated Electron

Photo-induced scavenging is static scavenging!

Photo-induced Scavenging Yield vs. Pulse Energy

